2550 HW 9 Solutions

$$\begin{array}{c} (a) & A = \begin{pmatrix} 1 & 3 \\ 4 & -6 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} -2 \\ 1b \end{pmatrix} \qquad \begin{array}{c} pg \\ pg \\ pg \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} We want to see if \vec{b} is in the columnspace of A . So we want to see if we can solve \\ \hline \begin{pmatrix} -2 \\ 1b \end{pmatrix} = X_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} + X_2 \begin{pmatrix} 3 \\ -6 \end{pmatrix} \qquad (X) \\ \hline \end{array} \\ \hline \hline \end{matrix} \\ \begin{array}{c} for some scalars X_1, X_2. \\ \hline \end{array} \\ \begin{array}{c} Notice that we can rewrite this equation as \\ \begin{pmatrix} -2 \\ 1b \end{pmatrix} = \begin{pmatrix} X_1 \\ 4X_1 \end{pmatrix} + \begin{pmatrix} 3X_2 \\ -6X_2 \end{pmatrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \end{array} \\ \begin{array}{c} Which is equivalent to \\ \begin{array}{c} -2 \\ 1b \end{pmatrix} = \begin{pmatrix} x_1 \\ 4X_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1b \end{pmatrix} = \begin{pmatrix} X_1 \\ 4X_1 \end{pmatrix} + \begin{pmatrix} -2 \\ -6X_2 \end{pmatrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \begin{array}{c} Which is equivalent to \\ \begin{array}{c} -2 \\ 1b \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 4X_1 - 6X_2 \end{pmatrix} \\ \hline \end{matrix} \\ \hline \cr \cr \hline \cr \hline \cr \cr \hline \cr \cr \cr \hline \cr \cr \cr \rule \\ \hline \cr \cr$$
 \hline \cr \cr \cr \rule \\ \hline \cr \cr \cr \hline \cr \cr \cr \rule \\ \hline \cr \rule \\ \hline \cr \hline \cr \end{matrix} \\ \hline \cr \hline \cr \cr \rule \\ \hline \cr \end{matrix} \\ \hline \cr \hline \cr \rule \\ \hline \cr \hline \cr \end{matrix} \\ \hline \cr \cr \rule \\ \hline \hline \cr \rule \\ \hline \hline \cr \hline \hline \cr \hline \cr \rule \\ \hline \hline \cr \end{matrix} \\ \hline \hline \cr \hline \cr \rule \\ \hline \hline \end{matrix} \\ \hline \hline \hline \hline \end{matrix} \\ \hline \hline \end{matrix} \\ \hline \hline \cr \hline \cr \hline \cr \hline \end{matrix} \\ \hline \hline \hline \cr

Let's see if we can solve it.

$$\begin{pmatrix} 1 & 3 & | & -2 \\ 4 & -6 & | & 10 \end{pmatrix} \xrightarrow{-4R_1+R_2 \rightarrow R_2} \begin{pmatrix} 1 & 3 & | & -2 \\ 0 & -18 & | & 18 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{18}R_2 \rightarrow R_2} \begin{pmatrix} 1 & 3 & | & -2 \\ 0 & 1 & | & -1 \end{pmatrix}$$

$$\begin{array}{c} \hline (b) \quad A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \\ \hline B = \begin{pmatrix} 1 & 1 & 2 \\ 2 \\ 1 \end{pmatrix} \\ \hline B = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline B = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 \\ 1 & 0 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \\ \hline C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \hline C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \hline C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \hline C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline C = \begin{pmatrix} 2 & 0 & 0 \\ 0$$

Let's see if its solvable

$$\begin{pmatrix} 1 & 1 & 2 & | & -1 \\ 1 & 0 & 1 & | & 0 \\ 2 & 1 & 3 & | & 2 \end{pmatrix} \xrightarrow{-R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -1 & -1 & | & 1 \\ 0 & -1 & -1 & | & 4 \end{pmatrix} \xrightarrow{-R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -1 & -1 & | & 4 \end{pmatrix}$$

$$\xrightarrow{-R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1 & | & -1 \\ 0 & -1 & -1 & | & 4 \end{pmatrix} \xrightarrow{R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1 & | & -1 \\ 0 & 0 & 0 & | & 3 \end{pmatrix}$$

This gives

$$\begin{array}{l} \chi_1 + \chi_2 + 2\chi_3 = -1 \\ \chi_2 + \chi_3 = -1 \\ 0 = 3 \end{array}$$

There are no solutions to this system
since we have
$$0=3$$
.
Thus, there are no solutions to (X)
on the previous page and
on the previous page and
is not in the column space
of A.

P9 5 1(a) & 1(6). We solve in the same way as $\overline{L}_{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \chi_{1} \begin{pmatrix} 1 \\ 9 \end{pmatrix} + \chi_{2} \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} + \chi_{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} \chi \\ \chi \end{pmatrix}$ for X1, X2, X3? This equation becomes $\vec{t}_{b} = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \chi_{1} - \chi_{2} + \chi_{3} \\ 9\chi_{1} + 3\chi_{2} + \chi_{3} \\ \chi_{1} + \chi_{2} + \chi_{3} \end{pmatrix}$ Which is equivalent to X_1 $\begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 - 1 & 1 \\ 9 & 3 & 1 \\ -1 & X_2 \end{pmatrix}$ Let's try to solve this system.

$$\begin{pmatrix} 1 & -1 & 1 & 5 \\ 9 & 3 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix} \xrightarrow{-9R_1+R_2 \to R_2} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 12 & -8 & -94 \\ 0 & 2 & 0 & -6 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 2 & 0 & -6 \\ 0 & 12 & -8 & -94 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}R_2 \to R_2} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -3 \\ 0 & 12 & -8 & -94 \end{pmatrix}$$

$$\xrightarrow{-12R_2+R_3 \to R_3} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & -8 & -8 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{8}R_3 \to R_3} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & -8 & -8 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{8}R_3 \to R_3} \begin{pmatrix} 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & -8 & -8 \end{pmatrix}$$

$$\xrightarrow{X_2 = -3} \\ \xrightarrow{X_3 = 1} \qquad \Rightarrow \qquad \begin{array}{c} X_3 = 1 \\ X_2 = -3 \\ X_1 = 5 + X_2 - X_3 \\ = 5 - 3 - 1 = 1 \end{array}$$

$$\begin{array}{c} 2(a) \\ A = \begin{pmatrix} 1 & -1 & 5 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{pmatrix} \\ \hline \\ (-) \\ | b|_{1} \\ field \\ a \\ basic \\ fvr \\ the nullspace. \\ Recall \\ \end{array}$$

rg 8

(i) We think a same in A is all the
that the nullspace of A is all the
solutions to
$$A \stackrel{\sim}{x} = \stackrel{\circ}{O}$$
 that is the
solutions to
 $\begin{pmatrix} 1-1 & 3 \\ 5-4 & -4 \\ 7-6 & 2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
which is equivalent to solving

$$\begin{pmatrix} \chi_1 - \chi_2 \\ 5\chi_1 - 4\chi_2 - 4\chi_3 \\ 7\chi_1 - 6\chi_2 + 2\chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Which is the system

$$\chi_1 - \chi_2 + 3\chi_3 = 0$$

 $5\chi_1 - 4\chi_2 - 4\chi_3 = 0$
 $7\chi_1 - 6\chi_2 + 2\chi_3 = 0$

Solving we have
$$\begin{pmatrix}
| -| 3 | 0 \\
5 - 4 - 4 | 0 \\
7 - 6 2 | 0
\end{pmatrix} \xrightarrow{-5R_1 + R_2 \rightarrow R_2} \begin{pmatrix}
| -| 3 | 0 \\
0 | -|9 | 0 \\
-7R_1 + R_3 \rightarrow R_3
\end{pmatrix} \begin{pmatrix}
| -| 3 | 0 \\
0 | -|9 | 0
\end{pmatrix}$$

$$\frac{-R_2 + R_3 \rightarrow R_3}{0 | 0 | 0 | 0} \begin{pmatrix}
| -| 3 | 0 \\
0 | -|9 | 0 \\
0 | 0 | 0
\end{pmatrix}$$

رمك

So the nullspace of Ais $N(A) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \right\}$ $= \left\{ \begin{pmatrix} 16t \\ 192 \\ 192 \\ 1 \end{pmatrix} \right\} t is in R_{f}^{2} =$ notation for nullspace of A

Pg 10 $= \left\{ t \begin{pmatrix} i \\ i \\ i \end{pmatrix} \mid t \text{ in } R \right\}$ $= \text{Span}\left(\left\{ \left\{ \begin{pmatrix} 16\\ 19\\ 1 \end{pmatrix} \right\} \right\}\right)$ So, $\begin{pmatrix} 16\\ 19 \end{pmatrix}$ spans the nullspace of A. This vector is lin. ind. since if $C_{1}\begin{pmatrix}16\\19\\1\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix} + he_{1}\begin{pmatrix}16c_{1}\\19c_{1}\\c_{1}\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$ and so ci=0 (by the bottom equation) Thus, a basis for the nullspace $is \begin{pmatrix} 16\\ 19 \end{pmatrix}$. (ii) The nullity of A is the dimension of the nullspace of A. Since the nullspace of A has a basis of size 1, the nullity of A is 1.

(iii) Now for the column space.
We saw in part (i) that the
row echelon form of

$$A = \begin{pmatrix} 1 - 1 & 3 \\ 5 - 4 - 4 \\ 7 - 6 & 2 \end{pmatrix} is \begin{pmatrix} 1 - 1 & 3 \\ 0 & 1 & -19 \\ 0 & 0 & 0 \end{pmatrix}.$$
Circle the leading 1's in the row-echelon
form of A.

$$\begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -19 \\ 0 & 0 & 0 \end{pmatrix}$$
This corresponds to column 1 and column 2
This corresponds to column space of A,
a basis for the column space of A,
That is, $\begin{cases} 1 & 3 \\ 5 & 2 \\ 1 & -6 \\$

(iv) The rank of A is the dimension
of the column space of A which is
the number of elements in a basis
for the column space of A. By (iii)
the column space has dimension 2.
(v) A is
$$3 \times 3$$
 [mxn where $m=3$
 $n=3$]
The rank-nullity than says that
rank (A) + nullity (A) = N
 $n= \frac{1}{\sqrt{2}}$
In this problem we have that
this equation becomes
 $2 + 1 = 3$
which is true, So, we have verified
the rank-nullity thm
for this matrix,

$$\begin{array}{c} \hline 2(b) \quad A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \\ \hline (i) \text{ The nullspace of } A \text{ consists of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ The nullspace of } A \text{ consists of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ consists of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ consists of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} \\ \hline (i) \text{ the nullspace of } A \text{ constraints of all } \vec{X} \\ \hline (i) \text{ the nullspace of all } A \text{ the nullspace of$$

$$= Span\left(\frac{5}{2}\begin{pmatrix}\frac{1}{2}\\0\\1\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, pan the nullspace of A.$$
Let's show they are linearly independent.

Suppose

$$C_1\begin{pmatrix} 1/2\\0\\1 \end{pmatrix} + C_2\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Then,

$$\begin{pmatrix}
1/2 & C_1 \\
C_2 \\
C_1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ and } C_2 = 0 \text{ from the}$$

$$So, C_1 = 0 \text{ from t$$

(iii) Since the hullspace of A has [P9]
a basis with two vectors, it [16]
has dimension two.
So, hullity (A) = 2.
(iii) If one row reduces

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$
 as in part (ā)
then one gets $\begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ for the row-
echelon form
then one gets $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ of A.
Circling the leading I's gives:
 $\begin{pmatrix} (1) & 0 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
The leading 1 lives in column 1 of
The leading 1 lives in column 1 of
the row-echelon form of A.
the row-echelon form of A.
the row-echelon form of A.
the row-echelon form of A.

That is,
$$\{\binom{2}{9}\}$$
 is a basis
for the column space of A.
(iv) By part (i ,) the column
space has dimension 1 (a basis
br the column space consists of one vector).
for the column space consists of one vector).
So, the rank of A is 1.
(v) A is $mxn = 3x3$.
(v) A is $mxn = 3x3$.
The rank-nullity theorem says
rank (A) + nullity (A) = n
rank (A) + nullity (A) = n
met columns of A
which for this example becomes
1 + 2 = 3
which is true. So we have verified
the rank-nullity theorem
for this matrix.

$$\begin{array}{c} 2(c) \\ -1 & 3 & 2 \\ -1 & 3 & 2 \\ \end{array}$$

(i) Same procedure as
$$Z(a)$$
 and $Z(b)$
solutions. We want to solve
 $\begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$

Let's do it.

$$\begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 2 & 1 & 3 & 0 & 0 \\ -1 & 3 & 2 & 2 & 0 \end{pmatrix} \xrightarrow{-2R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & -7 & -7 & -4 & 0 \\ 0 & 7 & 7 & 4 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 \to R_2} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 7 & 7 & 4 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{4}R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 4 & 5 & 2 & 0 \\ 0 & 1 & 1 & 4/7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

So,
$$X_{1} = -4X_{2} - 5X_{3} - 2X_{4}$$

 $X_{2} = -X_{3} - \frac{4}{7}X_{4}$
 $X_{3} = t$
 $X_{4} = U$
 $X_{4} = U$
 $X_{2} = -t - \frac{4}{7}U$
 $X_{2} = -t - \frac{4}{7}U$
 $X_{1} = -4(-t - \frac{4}{7}U) - 5t - 2U$
 $= -t + \frac{3}{7}U$
So the nullspace of A is
 $N(A) = \left\{ \begin{pmatrix} X_{1} \\ X_{2} \\ X_{4} \end{pmatrix} \right\} A \begin{pmatrix} X_{1} \\ X_{2} \\ X_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$
 $= \left\{ \begin{pmatrix} -t + \frac{3}{7}U \\ -t - \frac{4}{7}U \\ U \end{pmatrix} X aue$
 $real numbers = x$

$$= \left\{ \begin{pmatrix} -t \\ -t \\ t \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ u \end{pmatrix} \right\}$$

$$= \left\{ t \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} \frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$= t_{0} \quad t_{0} \quad u \text{ are real numbers}$$

$$= span \left(\left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} \\ \frac{1}{9} \begin{pmatrix} \frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{pmatrix} \right\}$$

Let's check that these two vectors are
linearly independent.
Suppose
$$c_1\begin{pmatrix} -1\\ -1\\ 1\\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 2/7\\ -4/17\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$

Then,
$$\begin{pmatrix} -c_1 + \frac{2}{4}c_2 \\ -c_1 - \frac{4}{4}c_2 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The bottom two equations give that
 $c_1 = c_2 = 0$.
Thus $\begin{cases} \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1 \end{pmatrix} \end{cases}$ is a
basis for the nullspace of A.
(ii) The nullspace of A has a
basis with two elements, hence
it has dimension two. So, the
hullity of A is 2.

(iii) Part (i) showr row-reducing	P9 22
$A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$ leads	
to the row-reduced form	
$ \begin{pmatrix} 1 & 4 & 5 & 2 \\ 0 & 1 & 1 & 4/7 \\ 0 & 0 & 0 & 0 \end{pmatrix} $ where the leading ones are circled	
These leading I's are in columns one	
and two of the row-reduced and two of the row-reduced	
of A. Thus, colorn the column	
two are a basis in That is a basis is	
space of A.	
$\left\{ \begin{pmatrix} 1 \\ z \\ -1 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} \right\}.$	

1

which becomes
$$rank(A|+3) = 5$$

rank(A) = 2.

(4) Suppose A is max.
We are given that a basis for
the column space of A is

$$\begin{cases} \binom{7}{3} \\ \binom{7}{4} \\ \binom{7}{4} \end{cases}, \begin{pmatrix} \binom{7}{2} \\ \binom{7}{4} \binom{7}{4} \\ \binom$$

 $\begin{array}{c|c} \hline 5(a) & \text{Let} & \vec{v}_1 = \langle 2, -17 \\ \vec{v}_2 = \langle 5, -77 \\ \vec{v}_3 = \langle 1, 17 \\ \vec{v}_3 = \langle 1, 17 \\ \end{array}$

P9 26

(i)
To find a subset of
$$V_{1,1}V_{2,1}V_{3}$$
 that
To find a subset of $V_{1,1}V_{2,1}V_{3,1}$
is a basis for span $(z_{1,1}V_{2,1}V_{3,1})$
is a basis for span $(z_{1,1}V_{2,1}V_{3,1})$
we put the vectors into a matrix as
we put the vectors into a matrix as
 $(z_{1,1}-z_{1,1})$

Let
$$A = \begin{pmatrix} -1 - 7 & 1 \end{pmatrix}$$

So we are looking for a basis
for the column space of A .
We need to row-reduce A .
We need to row-reduce A .
 $\begin{pmatrix} 2 & 5 & 1 \\ -1 & -7 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} -1 & -7 & 1 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} -1 & -7 & 1 \\ 2 & 5 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 7 & -1 \\ 2 & 5 & 1 \end{pmatrix} \xrightarrow{-R_1 \to R_1} \begin{pmatrix} 1 & 7 & -1 \\ 2 & 5 & 1 \end{pmatrix} \xrightarrow{-R_1 \to R_2} \begin{pmatrix} 1 & 7 & -1 \\ 0 & -9 & 3 \end{pmatrix} \xrightarrow{-R_1}$

$$\frac{-\frac{1}{3}R_{2} \rightarrow R_{2}}{\left(\begin{array}{c}1 & 7 & -1\\ 0 & 1 & -\frac{1}{3}\end{array}\right)}$$
The row-echelon form of $A = \begin{pmatrix} 2 & 5 & 1\\ -1 & -7 & 1 \end{pmatrix}$
is $\begin{pmatrix}1 & 7 & -1\\ 0 & 1 & -\frac{1}{3}\end{matrix}\right)$ where I where I we circled
the leading 1's. They are in columns
the leading 1's. They are in columns
one and two. So, columns one and
one and two. So, columns one and
two of A are a basis for the
two of A are a basis for the
two of A are a basis for the
for the column space of A .
for the column space of A .
for the column space of A .
So, span ($\{<2, -1, 2, <5, -7, 2\}$)
with busis $\{<2, -1, 2, <5, -7, 2\}$.

(ii) 28 Now we write the extra vector V3 as a linear combination of V, and Vz. Lets solve $\langle 1,1\rangle = c_1 \langle 2,-1\rangle + c_2 \langle 5,-7\rangle$ This becomes $\langle 1,1\rangle = \langle 2c_1+5c_2,-c_1-7c_2\rangle$. So, $2c_1 + 5c_2 = 1$ $-c_1 - 7c_2 = 1$ $\begin{array}{c} S_{0} | ving + his we get \\ \left(\begin{array}{c} 2 & 5 \\ -1 & -7 \end{array} \right) \\ \left(\begin{array}{c} 2 & 5 \\ -1 & -7 \end{array} \right) \\ \left(\begin{array}{c} -1 & -7 \\ -1 \end{array} \right) \\ \left(\begin{array}{c} 2 & 5 \\ -1 \end{array} \right) \\ \left(\begin{array}{c} -1 & -7 \\ -7 \end{array} \right) \\ \left(\begin{array}{c} -1 & -7 \end{array} \right) \\ \left(\begin{array}{c} -1 & -7 \\ -7 \end{array} \right) \\ \left(\begin{array}{c} -1 & -7 \end{array}$ $\xrightarrow{-\frac{1}{9}R_2 \rightarrow R_2} \begin{pmatrix} 1 & 7 & -1 \\ 0 & 1 & -\frac{1}{3} \end{pmatrix}$ Which gives $\begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{$

$$\begin{aligned} S_{0,j} \\ \vec{v}_{3} &= \langle 1, j \rangle = \frac{4}{3} \langle 2, -1 \rangle - \frac{1}{3} \langle 5, -7 \rangle \\ &= \frac{4}{3} \vec{v}_{1} - \frac{1}{3} \vec{v}_{2} \end{aligned}$$

P9 29

$$5(b) \quad \text{Let} \quad \vec{v}_1 = \langle 1, 0, 1 \rangle$$

$$\vec{v}_2 = \langle 0, 1, 2 \rangle$$

$$\vec{v}_3 = \langle 1, 1, 1 \rangle$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_3 \text{ that}$$

$$(i) \quad \text{To find a subset of } \vec{v}_{1,1} \vec{v}_{2,1} \vec{v}_{3,1} \vec$$

We now row reduce A to find P9 30 a basis for the column space of A. $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \xrightarrow{-R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix}$ $\begin{array}{c} -2R_{2}+R_{3}-)R_{3} \\ (1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{array} \xrightarrow{\begin{array}{c} -\frac{1}{2}R_{3}\rightarrow R_{3} \\ 0 & 1 & 1 \\ 0 & 0 \end{array}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ So the row-eche (on form of $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ is $\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ where I've circled the leading 1's. The leading 1's me in columns one, two, and three. So, the curresponding columns one, two, and three of A are a basis for the column space of A. J

That is, a basis for the | P5 | 31 Column space of A is $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1$ So, a basis for the span of $\vec{v}_1 = \langle 1, \nabla, 1 \rangle$ g $\vec{v}_2 = \langle 0, 1, 2 \rangle$ $\vec{v}_1 = \langle 1, 0, 1 \rangle$, $\vec{v}_2 = \langle 0, 1, 2 \rangle$, $\vec{v}_3 = \langle 1, 1, 1 \rangle$. (ii) All of $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are a basis for the span of $\vec{v}_1, \vec{v}_2, \vec{v}_3$ So there is nothing to do here.

6 We are given that A is an

$$mxn = 3x3$$
 matrix and that
 $nullity(A) = 0$.
By the rank-nullity theorem
 $rank(A) + nullity(A) = n$
which becomes
 $rank(A) + 0 = 3$.
Thus, $rank(A) = 3$.
Thus, $rank(A) = 3$.
 $The column space of A is$
 $M = span\left(\begin{cases} a_{11} \\ a_{21} \\ a_{21} \end{cases} g\left(a_{12} \\ a_{22} \\ a_{32} \end{cases} g\left(a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} \right)$
Which has dimension 3 since
 $rank(A) = 3$.

So, W = column space of A Pg is of dimension 3 and it lives in the 3 dimensional RS space R³. By a theorem in class this implies that $W = \mathbb{R}^3$. Thus, every vector $\begin{pmatrix} 9\\ 5\\ c \end{pmatrix} \in \mathbb{R}^3$ the is in W which is Column space of A. So, every vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ is in the span of the columns of A.