2550
HW 9
Solutions

\qquad
\qquad
\qquad
(1) (a) $A=\left(\begin{array}{cc}1 & 3 \\ 4 & -6\end{array}\right) \quad \vec{b}=\binom{-2}{10}$

We want to see if \vec{b} is in the columnspace of A, So we want to see if we can solve

$$
\binom{-2}{10}=x_{1}\binom{1}{4}+x_{2}\binom{3}{-6}
$$

linear combe of columns of A
for some scalars x_{1}, x_{2}.
Notice that we can rewrite this equation as

$$
\begin{aligned}
& \text { Notice that we can } \\
& \qquad\binom{-2}{10}=\binom{x_{1}}{4 x_{1}}+\binom{3 x_{2}}{-6 x_{2}} \\
& \text { which is equivalent to }\binom{-2}{10}=\binom{x_{1}+3 x_{2}}{4 x_{1}-6 x_{2}}
\end{aligned}
$$

$$
\text { which is equivalent to }\left(\begin{array}{c}
10
\end{array}\right)=\left(\begin{array}{cc}
1 & 3 \\
4 & -6
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

We have turned the problem into a question of: can we solve the above $\vec{b}=A \vec{x}$ equation.

Let's see if we can solve it.

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 3 & -2 \\
4 & -6 & 10
\end{array}\right) \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & -2 \\
0 & -18 & 18
\end{array}\right) \\
& \xrightarrow{-\frac{1}{18} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 3 & -2 \\
0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

Now we try to solve:

$$
\left.\begin{array}{l}
\text { Now we try to solve: } \\
\begin{array}{|}
x_{1}+3 x_{2}=-2 \\
x_{2}=-1
\end{array}
\end{array} \Rightarrow \begin{array}{l}
x_{1}=-2-3 x_{2} \\
x_{2}=-1
\end{array} \Rightarrow \begin{array}{l}
x_{1}=-2+3=1 \\
x_{2}=-1
\end{array}\right]
$$

So we can solve $(*)$ and we get

$$
\vec{b}=\binom{-2}{10}=1 \cdot\binom{1}{4}-1 \cdot\binom{3}{-6}
$$

So, \vec{b} is in the column space of A because it can be written as a linear combination of the columns of A.
(b) $\quad A=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$

We want to see if \vec{b} is in the columnspace of A, So we want to see if we can solve

$$
\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+x_{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

for some scalars x_{1}, x_{2}, x_{3}.
We can rewrite this equation as

$$
\begin{aligned}
& \text { can rewrite this equation } \\
& \left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{1} \\
2 x_{1}
\end{array}\right)+\left(\begin{array}{c}
x_{2} \\
0 \\
x_{2}
\end{array}\right)+\left(\begin{array}{c}
x_{3} \\
x_{3} \\
3 x_{3}
\end{array}\right)
\end{aligned}
$$

Which is equivalent to

$$
\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
x_{1}+x_{2}+2 x_{3} \\
x_{1}+x_{3} \\
2 x_{1}+x_{2}+3 x_{3}
\end{array}\right)
$$

Which is equivalent to

$$
\begin{aligned}
& \text { is equivalent to } \\
& \left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

So we have converted this problem into an equation of the form $\vec{b}=A \vec{x}$

Let's see if its solvable

$$
\begin{aligned}
& \left(\begin{array}{lll|c|}
1 & 1 & 2 & -1 \\
1 & 0 & 1 & 0 \\
2 & 1 & 3 & 2
\end{array}\right) \xrightarrow[-2 R_{1}+R_{2} \rightarrow R_{2}]{-R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{rrr|r}
1 & 1 & 2 & -1 \\
0 & -1 & -1 & 1 \\
0 & -1 & -1 & 4
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 4
\end{array}\right) \xrightarrow{R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & -1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \text { his gives } \\
& x_{1}+x_{2}+2 x_{3}=-1 \\
& x_{2}+x_{3}=-1 \\
& 0=3
\end{aligned}
$$

There are no solutions to this system since we have $0=3$.
Thus, there are n o solutions to ($(*)$ on the previous page and \vec{b} is not in the column space of A.

$$
\text { (1) } A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
9 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)
$$

We solve in the same way as $1(a) \&((b)$.
Can we solve

$$
\underbrace{\vec{b}=\left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
9 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)}_{x_{2}}
$$

for x_{1}, x_{2}, x_{3} ?
This equation becomes

$$
\begin{aligned}
& \text { This equation becomes } \\
& \vec{b}=\left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
x_{1}-x_{2}+x_{3} \\
9 x_{1}+3 x_{2}+x_{3} \\
x_{1}+x_{2}+x_{3}
\end{array}\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \text { Mich is equivalent to } \\
& \left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
9 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

Let's try to solve this system.

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
9 & 3 & 1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right) \xrightarrow{-9 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 12 & -8 & -44 \\
0 & 2 & 0 & -6
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 2 & 0 & -6 \\
0 & 12 & -8 & -44
\end{array}\right) \\
& \xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 1 & 0 & -3 \\
0 & 12 & -8 & -44
\end{array}\right) \\
& \xrightarrow{-12 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 1 & 0 & -3 \\
0 & 0 & -8 & -8
\end{array}\right) \\
& \xrightarrow{-\frac{1}{8} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 1 & 5 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \left.\begin{array}{rl}
x_{1}-x_{2}+x_{3} & =5 \\
x_{2} & =-3 \\
x_{3} & =1
\end{array}\right]\left[\begin{array}{l}
x \\
x \\
x
\end{array}\right. \\
& x_{3}=1 \\
& x_{2}=-3 \\
& x_{1}=5+x_{2}-x_{3} \\
& =5-3-1=1
\end{aligned}
$$

So, yes \vec{b} is in the column space of A and $(*)$ becomes

$$
\vec{b}=\left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)=1 \cdot\left(\begin{array}{l}
1 \\
9 \\
1
\end{array}\right)-3 \cdot\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+1 \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$2(a) \quad A=\left(\begin{array}{llc}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right)$
(i) We find a basis for the nullspace. Recall that the nullspace of A is all the solutions to $\overrightarrow{A x}=\overrightarrow{0}$ that is the solutions to

$$
\left(\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is equivalent to solving

$$
\left(\begin{array}{c}
x_{1}-x_{2}+3 x_{3} \\
5 x_{1}-4 x_{2}-4 x_{3} \\
7 x_{1}-6 x_{2}+2 x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is the system

$$
\begin{array}{r}
x_{1}-x_{2}+3 x_{3}=0 \\
5 x_{1}-4 x_{2}-4 x_{3}=0 \\
7 x_{1}-6 x_{2}+2 x_{3}=0
\end{array}
$$

Solving we have

$$
\begin{aligned}
& \left(\left.\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array} \right\rvert\, \begin{array}{l}
0 \\
0
\end{array}\right) \xrightarrow{-7 R_{1}+R_{3} \rightarrow R_{2} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & -19 & 0 \\
0 & 1 & -19 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & -19 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So,

$$
\begin{array}{r}
x_{1}-x_{2}+3 x_{3}=0 \\
x_{2}-19 x_{3}=0 \\
0=0
\end{array} \Rightarrow
$$

$$
\begin{aligned}
x_{3} & =t \\
x_{2} & =19 x_{3}=19 t \\
x_{1} & =x_{2}-3 x_{3} \\
& =19 t-3 t \\
& =16 t
\end{aligned}
$$

So the nullspace of A is

$$
\left.\begin{array}{l}
\text { So the nullspace or } \\
N(A)=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \left\lvert\, A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\overrightarrow{0}\right.\right\} \\
\text { for }
\end{array}\right\}
$$

notation for nullspace of A $=\left\{\left.\left(\begin{array}{c}16 t \\ 19 t \\ t\end{array}\right) \right\rvert\, t\right.$ is in $\left.\mathbb{R}\right\}=$

$$
\begin{aligned}
& =\left\{\left.t\left(\begin{array}{c}
16 \\
19 \\
1
\end{array}\right) \right\rvert\, \text { in } \mathbb{R}\right\} \\
& =\operatorname{span}\left(\left\{\left(\begin{array}{c}
16 \\
19 \\
1
\end{array}\right)\right\}\right)
\end{aligned}
$$

So, $\left(\begin{array}{c}16 \\ 19 \\ 1\end{array}\right)$ spans the nullspace of A.
This vector is lin. ind. since if

$$
\begin{aligned}
& \text { is vector is lin. ind. since } 17 \\
& c_{1}\left(\begin{array}{c}
16 \\
19 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right) \text { then }\left(\begin{array}{c}
16 c_{1} \\
19 c_{1} \\
c_{1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

and so $c_{1}=0$ [by the bottom equation]
Thus, a basis for the nullspace is $\left(\begin{array}{c}16 \\ 19 \\ 1\end{array}\right)$.
(in) The nullity of A is the dimension of the nullspace of A. Since the nullspace of A has a basis of size 1 , the nullity of A is 1 .
(iii) Now for the column space.

We saw in part (i) that the row echelon form of

$$
A=\left(\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right) \text { is }\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 0 & 0
\end{array}\right)
$$

Circle the leading 1's in the row-echelon form of A.

$$
\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 0 & 0 \\
1 & \uparrow &
\end{array}\right)
$$

This corresponds to column 1 and column 2 So columns 1 and 2 of A form a basis for the column space of A. That is, $\left\{\left(\begin{array}{l}1 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}-1 \\ -4 \\ -6\end{array}\right)\right\}$ form a basis for the column space of A.
(iv) The rank of A is the dimension of the column space of A which is the number of elements in a basis for the column space of A. By (iii) the column space has dimension 2 .
(v) A is $3 \times 3\left[m \times n\right.$ where $\left.\begin{array}{l}m=3 \\ n=3\end{array}\right]$

The rank-nullity the says that

$$
\operatorname{rank}(A)+\text { nullity }(A)=n_{4}
$$

$$
n=\begin{gathered}
\# \text { columns } \\
\text { of } A
\end{gathered}
$$

In this problem we have that this equation becomes

$$
2+1=3
$$

Which is true, So, we have verified the rank-nullity the for this matrix.

2(b) $A=\left(\begin{array}{ccc}2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0\end{array}\right)$
(i) The nullspace of A consists of all $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ where $\vec{A} \vec{x}=\overrightarrow{0}$, that is all \vec{x} where

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & 0 & -2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Which is the same as solving

$$
\begin{aligned}
& \text { Which is the same as solving } \\
& \left(\begin{array}{cc}
2 x_{1} & -x_{3} \\
4 x_{1} & -2 x_{3} \\
0
\end{array}\right)=\left(\begin{array}{ll}
0 \\
0 \\
0
\end{array}\right) \& \begin{array}{ll}
2 x_{1} & -x_{3}=0 \\
4 x_{1} & -2 x_{3}=0 \\
0=0
\end{array}
\end{aligned}
$$

Let's solve this system

$$
\left(\begin{array}{ccc|c}
2 & 0 & -1 & 0 \\
4 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 0 & -1 / 2 & 0 \\
4 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}1 & 0 & -1 / 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
which becomes
x_{1}

$$
\begin{aligned}
-\frac{1}{2} x_{3} & =0 \\
0 & =0 \\
0 & =0
\end{aligned}
$$

leading variable: $X_{1}\left(\begin{array}{l}\text { pg } \\ 14\end{array}\right.$ free variables: X_{2}, x_{3}

So,

$$
\begin{array}{ll}
x_{1}=\frac{1}{2} x_{3}=\frac{1}{2} u & \\
x_{2}=t & \text { where } u, t \\
x_{3}=u & \text { are any real } \\
\end{array}
$$

So, the nullspace of A is

$$
\begin{aligned}
& \text { So, the nullspace of } A \text { is } \\
& \underbrace{N(A)}_{\text {notation }}=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \left\lvert\, A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\}
\end{aligned}
$$

notation

$$
\begin{aligned}
& \text { for } \left.\begin{array}{l}
\text { nullspace of } A \\
=\left\{\left.\left(\begin{array}{c}
\frac{1}{2} u \\
t \\
u
\end{array}\right) \right\rvert\, t, u \in \mathbb{R}\right\} \\
=\left\{\left.\left(\begin{array}{c}
\frac{1}{2} u \\
0 \\
u
\end{array}\right)+\left(\begin{array}{c}
0 \\
t \\
0
\end{array}\right) \right\rvert\, t, u \in \mathbb{R}\right\} \\
=\left\{\left.u\left(\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \right\rvert\, t, u \in \mathbb{R}\right\}=
\end{array}\right]
\end{aligned}
$$

$$
=\operatorname{sean}\left(\left\{\left(\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}\right)
$$

So, $\left(\begin{array}{c}1 / 2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ span the nullspace of A.
Let's show they are linearly independent.

Suppose

$$
c_{1}\left(\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Then,

$$
\left(\begin{array}{c}
1 / 2 c_{1} \\
c_{2} \\
c_{1}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So, $c_{1}=0$ and $c_{2}=0$ from the bottom two equations.
Thus, a basis for the rullspace

$$
\text { is }\left\{\left(\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

(ii) Since the nullspace of A has a basis with two vectors, it has dimension two.
So, nullity $(A)=2$.
(iii) If one row reduces $A=\left(\begin{array}{ccc}2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0\end{array}\right)$ as in part (i) then one gets $\left(\begin{array}{ccc}1 & 0 & -1 / 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \begin{gathered}\text { for the row- } \\ \text { echelon form }\end{gathered}$ of A.

Circling the leading I's gives:

$$
\left(\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The leading 1 lives in column 1 of the row-echelon form of A. So, column 1 of A is a basis for the column space of A.

That is, $\left\{\left(\begin{array}{l}2 \\ 4 \\ 0\end{array}\right)\right\}$ is a basis for the column space of A,
(iv) By part (iii) the column space has dimension 1 [a basis for the column space consists of one vector]. So, the rank of A is 1 .
(v) A is $m \times n=3 \times 3$.

The rank-nullity theorem says

$$
\operatorname{rank}(A)+\text { nullity }(A)=n
$$

$$
\begin{array}{r}
\operatorname{rank}(A)+\text { nullity }(H) \frac{\uparrow}{n=\text { columns of } A} \\
\qquad \begin{array}{c}
\text { becomes }
\end{array}
\end{array}
$$

which for this example becomes

$$
1+2=3
$$

which is true. So we have verified the rank-nullity theorem for this matrix.

$$
2(c) \quad A=\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right)
$$

(i) Same procedure as $2(a)$ and $2(b)$ solutions. We want to solve

$$
\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Let's do it. } \\
& \left.\xrightarrow{\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right)} \begin{array}{l}
0
\end{array}\right) \xrightarrow[R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc|c}
1 & 4 & 5 & 2 & 0 \\
0 & -7 & -7 & -4 & 0 \\
0 & 7 & 7 & 4 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{7} R_{2} \rightarrow R_{2}}\left(\begin{array}{llll|l}
1 & 4 & 5 & 2 & 0 \\
0 & 1 & 1 & 4 / 7 & 0 \\
0 & 7 & 7 & 4 & 0
\end{array}\right) \\
& -7 R_{2}+R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{llll|l}
1 & 4 & 5 & 2 & 0 \\
0 & 1 & 1 & 4 / 7 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So we set: $x_{1}+4 x_{2}+5 x_{3}+2 x_{4}=0$

$$
\begin{array}{r}
x_{2}+5 x_{3}+2 x_{4}=0 \\
x_{2}+x_{3}+\frac{4}{7} x_{4}=0 \\
0=0
\end{array}
$$

So,

$$
\begin{aligned}
& x_{1}=-4 x_{2}-5 x_{3}-2 x_{4} \\
& x_{2}=-x_{3}-\frac{4}{7} x_{4}
\end{aligned}
$$

$$
x_{1}, x_{2} \text { are }
$$

I ending variables
x_{3}, x_{4} are free variables

$$
\begin{aligned}
x_{3} & =t \\
x_{4} & =u \\
x_{2} & =-t-\frac{4}{7} u \quad t, u \\
x_{1} & =-4\left(-t-\frac{4}{7} u\right)-5 t-2 u \\
& =-t+\frac{2}{7} u
\end{aligned}
$$

t, u are any real numbers

So the nullseace of A is

$$
\begin{aligned}
& N(A)=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \left\lvert\, A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.\right\} \\
& =\left\{\left.\left(\begin{array}{c}
-t+\frac{2}{\frac{2}{4} u} \\
-t-\frac{y}{7} u \\
t \\
u
\end{array}\right) \right\rvert\, \begin{array}{c}
u \text {, } t \text { are } \\
\text { real numbers }
\end{array}\right\}=
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\left.\left(\begin{array}{c}
-t \\
-t \\
t \\
0
\end{array}\right)+\left(\begin{array}{c}
\frac{2}{7} u \\
-\frac{4}{7} 4 \\
0 \\
u
\end{array}\right) \right\rvert\, \begin{array}{c}
t, u \text { me real } \\
\text { numbers }
\end{array}\right\} \\
& =\left\{t\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right)+u\left(\begin{array}{c}
2 / 7 \\
-4 / 7 \\
0 \\
1
\end{array}\right)\left(\begin{array}{c}
p, \\
2 \\
\text { numbers }
\end{array}\right\}\right. \\
& =\operatorname{span}\left(\left\{\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{2}{7} \\
-\frac{4}{7} \\
0 \\
1
\end{array}\right)\right\}\right)
\end{aligned}
$$

Let's check that these two vectors are linearly independent.
Suppose

Then, $\left(\begin{array}{c}-c_{1}+2 / 7 \\ -c_{2}-4 / 7 \\ c_{1}-4 \\ c_{1} \\ c_{2}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
The bottom two equations give that $c_{1}=c_{2}=0$.
Thus $\left\{\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}\frac{2}{7} \\ -\frac{4}{7} \\ 0 \\ 1\end{array}\right)\right\}$ is a
basis for the nullspace of A.
(ii) The nullspace of A has a basis with two elements, hence it has dimension two. So, the nullity of A is 2 .
(iii) Part (i) shows row-reducing

$$
A=\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right) \quad \text { leads }
$$

to the row-reduced form

$$
\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
0 & 1 & 1 & 4 / 7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where the leading ones are circled.

These leading 1's are in columns one and two of the row-reduced form of A. Thus, columns one and two are a basis for the column space of A. That is a basis is

$$
\left\{\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) g\left(\begin{array}{l}
4 \\
1 \\
3
\end{array}\right)\right\}
$$

(iv) By part (oui) a basis for the column space of A has two elements, so the column space has dimension two.
Hence the rank of A is 2 .
(v) A is $m \times n=3 \times 4$.

The rank nullity theorem says

$$
\begin{array}{r}
\text { nullity }(A)+\operatorname{rank}(A)=n \\
4 \\
n=\# \begin{array}{c}
\text { columns } \\
\text { of } A
\end{array}
\end{array}
$$

This formula becomes

$$
2+2=4
$$

Which is true.
So we have verified that the rank-nullity theorem is true for this matrix.
(3) We are given that
A is $m \times n=4 \times 5$ and that the nullity of A is 3 .
The rank-nullity theorem tells us that

$$
\operatorname{rank}(A)+\text { nullity }(A)=n
$$

which becomes

$$
\operatorname{rank}(A)+3=5
$$

So,

$$
\operatorname{rank}(A)=2
$$

(4) Suppose A is $m \times n$.

We are given that a basis for the column space of A is
$\left\{\left(\begin{array}{c}2 \\ -3 \\ 1 \\ 8 \\ 7\end{array}\right),\left(\begin{array}{c}-3 \\ 2 \\ 1 \\ -9 \\ 6\end{array}\right)\right\}$. Thus, the column
space has dimension 2. So, $\operatorname{rank}(A)=2$.
We are also given that the nullspace has a basis of size 2. Thus, nullity $(A)=2$.
By the rank-nullity theorem,

$$
n=\operatorname{rank}(A)+\text { nullity }(A)
$$

$$
\begin{aligned}
& \text { \# columns } \\
& \text { of } A
\end{aligned}
$$

So, the number of columns of A is

$$
n=2+2=4
$$

$5(a)$ Let

$$
\begin{aligned}
& \vec{v}_{1}=\langle 2,-1\rangle \\
& \vec{v}_{2}=\langle 5,-7\rangle \\
& \vec{v}_{3}=\langle 1,1\rangle
\end{aligned}
$$

To find a subset of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ that
(i) is a basis for $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right)$ we put the vectors into a matrix as columns.

$$
\text { columns. } A=\left(\begin{array}{ccc}
2 & 5 & 1 \\
-1 & -7 & 1
\end{array}\right)
$$

So we are looking for a basis for the column space of A. We need to row-reduce A.

$$
\begin{aligned}
& \text { We need to cow-rech } \\
& \left(\begin{array}{ccc}
2 & 5 & 1 \\
-1 & -7 & 1
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc}
-1 & -7 & 1 \\
2 & 5 & 1
\end{array}\right) \\
& \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc}
1 & 7 & -1 \\
2 & 5 & 1
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc}
1 & 7 & -1 \\
0 & -9 & 3
\end{array}\right) \rightarrow
\end{aligned}
$$

$$
\xrightarrow{-\frac{1}{9} R_{2} \rightarrow R_{2}}\left(\begin{array}{lll}
1 & 7 & -1 \\
0 & 1 & -1 / 3
\end{array}\right)
$$

The row-echelon form of $A=\left(\begin{array}{ccc}2 & 5 & 1 \\ -1 & -7 & 1\end{array}\right)$
is $\left(\begin{array}{ll}7 & -1 \\ 0 & -1 / 3\end{array}\right)$ where Ilve circled
the leading 1's, They are ir columns one and two. So, columns one and two of A are a basis for the column space of A,
That is, $\left\{\binom{2}{-1},\binom{5}{-7}\right\}$ is a basis for the column space of A.
So, $\operatorname{span}(\{\langle 2,-1\rangle,\langle 5,-7\rangle,\langle 1,1\rangle\})$

$$
=\operatorname{span}(\{\langle 2,-1\rangle,\langle 5,-7\rangle\})
$$

with basis $\{\langle 2,-1\rangle,\langle 5,-7\rangle\}$.
(ii)

Now we write the extra vector \vec{v}_{3} as a linear combination of $\overrightarrow{v_{1}}$ and \vec{v}_{2}. Lets solve

$$
\begin{aligned}
& \underbrace{\langle 1,1\rangle}_{\vec{v}_{3}}=c_{1} \underbrace{\langle 2,-1\rangle}_{\vec{V}_{1}}+c_{2} \underbrace{\langle 5,-7\rangle}_{\overrightarrow{v_{2}}} \\
& \text { This becomes }\langle 1,1\rangle=\left\langle 2 c_{1}+5 c_{2},-c_{1}-7 c_{2}\right\rangle .
\end{aligned}
$$

So,

$$
\begin{aligned}
& 2 c_{1}+5 c_{2}=1 \\
& -c_{1}-7 c_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solving this we get } \\
& \left(\begin{array}{cc|c}
2 & 5 & 1 \\
-1 & -7 \mid & 1
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
-1 & -7 & 1 \\
2 & 5 & 1
\end{array}\right)
\end{aligned}
$$

Solving this we get

$$
\xrightarrow{-\frac{1}{9} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 7 & -1 \\
0 & 1 & -1 / 3
\end{array}\right)
$$

which gives

$$
c_{1}+7 c_{2}=-1
$$

$$
c_{2}=-1 / 3
$$

$$
c_{2}=-1 / 3
$$

$$
c_{1}=-1-7 c_{2}
$$

$$
\begin{aligned}
& =-1 c^{2} \\
& =-1-7(-1 / 3)=\frac{4}{3}
\end{aligned}
$$

So,

$$
\begin{aligned}
\vec{V}_{3}=\langle 1,1\rangle & =\frac{4}{3}\langle 2,-1\rangle-\frac{1}{3}\langle 5,-7\rangle \\
& =\frac{4}{3} \vec{V}_{1}-\frac{1}{3} \vec{v}_{2}
\end{aligned}
$$

5(b) Let

$$
\begin{aligned}
& \vec{v}_{1}=\langle 1,0,1\rangle \\
& \vec{v}_{2}=\langle 0,1,2\rangle \\
& \vec{v}_{3}=\langle 1,1,1\rangle
\end{aligned}
$$

(i) To find a subset of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ that is a basis for $\operatorname{span}\left(\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{v}_{3}\right\}\right)$ we put the vectors into a matrix as columns. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

We now row reduce A to find a basis for the column space of A.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right) \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 2 & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right) \xrightarrow{-\frac{1}{2} R_{3} \rightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { form of } A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
\end{aligned}
$$

So the row-echelon form of $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)$
is $\left(\begin{array}{lll}11 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & (1)\end{array}\right)$ where I've circled the
leading 1's. The leading 1's are in columns one, two, and three. Se, the corresponding columns one, two, and three of A are a basis for the column space of A.

That is, a basis for the column space of A is

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), p\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

So, a basis for the span

$$
\begin{aligned}
& \text { So, a basis tor } \vec{V}_{2}=\langle 0,1,2\rangle \text {, } \\
& \text { of } \vec{V}_{1}=\langle 1,0,1\rangle,
\end{aligned}
$$

$$
\vec{v}_{3}=\langle 1,1,1\rangle \underset{\rightarrow}{\text { is }}
$$

$$
\begin{aligned}
& \vec{v}_{3}=\langle 1,1,1\rangle \stackrel{\text { is }}{=} \\
& \vec{v}_{1}=\langle 1,0,1\rangle, \vec{v}_{2}=\langle 0,1,2\rangle, \vec{v}_{3}=\langle 1,1,1\rangle . \\
& \rightarrow \rightarrow \rightarrow \text { are a }
\end{aligned}
$$

(ii) All of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are a basis for the span of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ So there is n_{0} thing to do here.
6) We are given that A is an $m \times n=3 \times 3$ matrix and that nullity $(A)=0$.
By the rank-nullity theorem

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

which becomes

$$
\operatorname{rank}(A)+0=3
$$

Thus, $\operatorname{rank}(A)=3$.
Since A is $3 \times 3, \quad A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.
The column space of A is

$$
\begin{aligned}
& \text { The column space of } A \text { is } \\
& \begin{aligned}
W=\operatorname{span}\left(\left\{\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right)\right. & \left.\left.g\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right), g\left(\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right)\right\}\right) \\
& =2 \text { since }
\end{aligned}
\end{aligned}
$$

Which has dimension 3 since $\operatorname{rank}(A)=3$.

So, $W=$ column space of A is of dimension 3 and it lives in the 3 dimensional space \mathbb{R}^{3}.
By a theorem in class this implies that
 $W=\mathbb{R}^{3}$.
Thus, every vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$ is in W which is the column space of A.
So, every vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathbb{R}^{3}$ is in the span of the columns of A.

